7 Haziran 2010 Pazartesi

ÜSLÜ SAYILARDA İŞLEMLER

a.a.a.a.a…..a=an (n tane a’nın çarpımı) (a=taban,n=üs veya kuvvet)

3x3x3x3x3=35 (5 tane 3’ün yan yana yazılıp çarpılmasıdır.)

2x2x2x2x2x2x2x2x2=29

(-4)x(-4)=(-4)2

Sıfırdan farklı her sayının sıfırıncı kuvveti 1’e eşittir.Sıfırın sıfırıncı kuvveti tanımsızdır. 00=tanımsız

n0=1

(-1)0=1

70=1

Sıfırın sıfırdan farklı bütün kuvvetleri 0’a eşittir.

01=0

05=0

0109=0

10’un pozitif kuvvetleri:

101=10

102=100

103=1000

104=10000

10’un negatif kuvvetleri:

10-1=0,1

10-2=0,01

10-3=0,001

10-4=0,0001

Pozitif bir tam sayının tek ve çift kuvvetleri pozitiftir.

22=4

23=8

24=16

Negatif bir tam sayının tek kuvvetleri daima negatif tam sayıdır.

(-2)1=-2

(-2)3=-8

(-2)5=-32

Negatif bir tam sayının çift kuvvetleri daima pozitif tam sayıdır.

(-2)2=4

(-2)4=16

(-2)6=64



Üslü sayılarda toplama ve çıkarma işlemi yaparken, benzer üslü ifadenin önündeki katsayılar toplanır veya çıkarılır.

x.an + y.an - z.an = (x+y-z).an



Üslü sayılarda çarpma işlemi iki farklı şekildedir.Üsler aynı olduğunda tabanlar çarpılır, tabanlar aynı olduğunda üsler toplanır.

am . bm = (a.b)m

am . an = am+n



Üslü sayılarda bölme işlemi yaparken katsayılar bölünür,aynı tabanın üsleri birbirinden çıkarılır.

am : an = am-n



Bir üslü ifade,paydan paydaya ya da paydadan paya alındığında üssünün işareti değişir.

(23) / (5-4) payla payda yer değiştirdiğinde (54) / (2-3)



a sıfırdan farklı bir tam sayı ve n doğal sayı olmak üzere a’nın negatif kuvvetleri:

a-1=1/a

a-2=1/a2

a-3=1/a3



Örnek: 26,0308 ondalıklı kesrini çözümleyelim.

2x101+6x100+0x10-1+3x10-2+0x10-3+8x10-4

0 yorum:

Yorum Gönder